login
A230930
Number of black-square subarrays of (n+2) X (3+2) 0..3 arrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4, no adjacent elements equal, and upper left element zero.
1
8, 16, 102, 232, 1682, 3768, 27106, 60824, 437930, 982552, 7073698, 15870936, 114260634, 256361112, 1845635570, 4140964568, 29812290666, 66888415128, 481553712898, 1080439106264, 7778468998714, 17452180031640, 125644509294994
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 16*a(n-2) + 3*a(n-4) - 10*a(n-6) + 24*a(n-8) - 16*a(n-10).
Empirical g.f.: 2*x*(4 + 8*x - 13*x^2 - 12*x^3 + 13*x^4 + 4*x^5 - 16*x^6 + 8*x^8) / (1 - 16*x^2 - 3*x^4 + 10*x^6 - 24*x^8 + 16*x^10). - Colin Barker, Sep 23 2018
EXAMPLE
Some solutions for n=4:
..x..0..x..0..x....x..0..x..0..x....x..0..x..0..x....x..0..x..0..x
..1..x..1..x..3....3..x..1..x..3....1..x..3..x..1....1..x..1..x..3
..x..2..x..0..x....x..0..x..2..x....x..2..x..2..x....x..2..x..0..x
..3..x..1..x..3....3..x..1..x..3....0..x..0..x..1....1..x..3..x..1
..x..0..x..2..x....x..2..x..0..x....x..1..x..3..x....x..0..x..2..x
..3..x..3..x..1....1..x..1..x..3....0..x..2..x..2....3..x..1..x..1
CROSSREFS
Column 3 of A230935.
Sequence in context: A291001 A062508 A083086 * A080452 A270377 A264472
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 01 2013
STATUS
approved