login
A230929
Number of black-square subarrays of (n+2) X (2+2) 0..3 arrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 4, no adjacent elements equal, and upper left element zero.
2
2, 6, 16, 48, 146, 438, 1312, 3936, 11810, 35430, 106288, 318864, 956594, 2869782, 8609344, 25828032, 77484098, 232452294, 697356880, 2092070640, 6276211922, 18828635766, 56485907296, 169457721888, 508373165666, 1525119496998
OFFSET
1,1
COMMENTS
Column 2 of A230935.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - a(n-2) + 3*a(n-3).
Empirical g.f.: 2*x / ((1 - 3*x)*(1 + x^2)). - Colin Barker, Mar 17 2018
EXAMPLE
Some solutions for n=4:
..x..0..x..2....x..0..x..0....x..0..x..2....x..0..x..2....x..0..x..0
..1..x..3..x....3..x..1..x....1..x..3..x....1..x..3..x....1..x..1..x
..x..2..x..2....x..2..x..3....x..2..x..0....x..2..x..2....x..2..x..2
..1..x..3..x....0..x..0..x....3..x..1..x....3..x..3..x....3..x..3..x
..x..0..x..2....x..1..x..3....x..0..x..0....x..0..x..2....x..0..x..2
..3..x..1..x....0..x..2..x....3..x..3..x....3..x..1..x....3..x..1..x
CROSSREFS
Cf. A230935.
Sequence in context: A129772 A360856 A046721 * A367042 A291189 A214843
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 01 2013
STATUS
approved