%I #34 Sep 09 2024 15:11:05
%S 1,2,4,9,15,165,317,488442,976572,7629882822,15258789078
%N Exponent of leading power of 5 in A230867(n).
%C The next term, a(13) = (5^((5^4+5^2+10)/4)+5^((5^2+5)/2)+2*5^2+12)/4 =
%C 53455294201843912922810729343029637576303937602100973959238749843207972\
%C 81974260717340996507118688896298416137695328.
%H Pontus von Brömssen, <a href="/A230868/b230868.txt">Table of n, a(n) for n = 2..16</a> (based on Alekseyev's Table of expressions for a(n))
%H Max Alekseyev, <a href="/A230868/a230868.txt">Table of expressions for a(n), for n=2..100</a>
%H Max A. Alekseyev and N. J. A. Sloane, <a href="https://arxiv.org/abs/2112.14365">On Kaprekar's Junction Numbers</a>, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
%e A230867(5) = 1953134 = 5^9 + 9, so a(5) = 9.
%Y Cf. A230867.
%K nonn,base
%O 2,2
%A _N. J. A. Sloane_, Nov 05 2013
%E Terms a(9) onward from _Max Alekseyev_, Nov 05 2013