login
A230868
Exponent of leading power of 5 in A230867(n).
2
1, 2, 4, 9, 15, 165, 317, 488442, 976572, 7629882822, 15258789078
OFFSET
2,2
COMMENTS
The next term, a(13) = (5^((5^4+5^2+10)/4)+5^((5^2+5)/2)+2*5^2+12)/4 =
53455294201843912922810729343029637576303937602100973959238749843207972\
81974260717340996507118688896298416137695328.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 2..16 (based on Alekseyev's Table of expressions for a(n))
Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
EXAMPLE
A230867(5) = 1953134 = 5^9 + 9, so a(5) = 9.
CROSSREFS
Cf. A230867.
Sequence in context: A358830 A321410 A218912 * A014290 A337343 A015730
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 05 2013
EXTENSIONS
Terms a(9) onward from Max Alekseyev, Nov 05 2013
STATUS
approved