The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230517 An irrational x such that the decimal representation of neither x nor sqrt(x) contains the digit 0. 0
 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The rational number 1/9 is an example of a number in [0, 1] such that the decimal representation of neither x nor sqrt(x) contains the digit 0. The object of Problem 10439 of the Amer. Math. Monthly was to find an irrational with the same property (see link). The solution proposed by Jerrold Grossman defines a sequence of irrationals starting with c1= 0.121121112... (A042974). Moving from left to right, the 0's in the decimal expansion of sqrt(cn) are eliminated by increasing the corresponding digit in the decimal expansion of cn by 2. The limit of cn is a number with the desired property. The indices of the decimals that are successively changed are 4, 8, 29, 38, 40, 54, 62, 70, 72, 96, 118, ... (see print(ndeci) in PARI script). The decimal expansion of sqrt(x) begins with 0.3483118317127931144162557719319698175373163374567.... LINKS C. V. Eynden, Problem 10439. An irrational mimic of 1/9, Amer. Math. Monthly, 104 (1997), 873. EXAMPLE 0.12132113211112111112111111213111112113131112111111111411111113... PROG (PARI) pdeci(x, nb) = {x = x * 10; for (n=1, nb, d = floor(x); x = (x-d)*10; print1(d, ", "); ); print(); } finddeci(x) = {x = x * 10; found = 0; nd = 1; while (! found, d = floor(x); x = (x-d)*10; if (d == 0, found = 1, nd++); ); nd; } changedeci(x, ndeci) = {deci = floor(x * 10^ndeci) - 10*floor(x * 10^(ndeci-1)); x += 2/10^ndeci; x; } lista(nn) = {prec = 2*nn; default(realprecision, prec); x = 0; for (n=1, prec, x = 10*x + 1 + issquare(9+8*n); ); x /= 10^prec; ok = 0; while (! ok, y = sqrt(x); ndeci = finddeci(y); print1(ndeci, ", "); x = changedeci(x, ndeci); if (ndeci > nn, ok =1); ); print(); pdeci(x, nn); print("sqrt(x)=", sqrt(x)); } \\ Michel Marcus, Oct 22 2013 CROSSREFS Cf. A042974, A042975. Sequence in context: A088192 A218459 A056062 * A165003 A165011 A213883 Adjacent sequences:  A230514 A230515 A230516 * A230518 A230519 A230520 KEYWORD nonn,base,cons AUTHOR Michel Marcus, Oct 22 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 13:18 EST 2020. Contains 332306 sequences. (Running on oeis4.)