login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230491 Integer areas of the integer-sided triangles such that the length of the inradius is a square. 0
6, 84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 432, 468, 486, 504, 540, 594, 630, 684, 720, 756, 864, 990, 1026, 1080, 1116, 1134, 1152, 1224, 1332, 1344, 1404, 1440, 1494, 1536, 1584, 1638, 1680, 1710, 1728, 1782, 1824, 1872, 1890 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The primitive areas are 6, 84, 108, 120, 132, 144, 156, 168, ...

The non-primitive areas 16*a(n) are in the sequence because if r is the inradius corresponding to a(n), then 4*r is the inradius corresponding to 16*a(n).

The following table gives the first values (A, r, a, b, c) where A is the integer area, r the inradius and a, b, c are the integer sides of the triangle.

******************************

*   A *  r  *  a *  b *   c  *

*******************************

*   6 *  1  *  3 *  4 *   5  *

*  84 *  4  * 13 * 14 *  15  *

*  96 *  4  * 12 * 16 *  20  *

* 108 *  4  * 15 * 15 *  24  *

* 120 *  4  * 10 * 24 *  26  *

* 132 *  4  * 11 * 25 *  30  *

* 144 *  4  * 18 * 20 *  34  *

* 156 *  4  * 15 * 26 *  37  *

* 168 *  4  * 10 * 35 *  39  *

* 180 *  4  *  9 * 40 *  41  *

* 240 *  4  * 12 * 50 *  58  *

* 264 *  4  * 33 * 34 *  65  *

* 300 *  4  * 25 * 51 *  74  *

* 324 *  4  *  9 * 75 *  78  *

* 396 *  4  * 11 * 90 *  97  *

* 420 *  4  * 21 * 85 * 104  *

* 432 *  9  * 30 * 30 *  36  *

* 468 *  9  * 25 * 39 *  40  *

.........................

REFERENCES

Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

LINKS

Table of n, a(n) for n=1..49.

Eric W. Weisstein, MathWorld: Inradius

FORMULA

Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula) and inradius r = A/s.

EXAMPLE

84 is in the sequence because the area of triangle (13, 14, 15) is given by Heron's formula A = sqrt(21*(21-13)*(21-14)*(21-15))= 84 where the number 21 is the semiperimeter and the inradius is given by r = A/s = 84/21 = 4 is a square.

MATHEMATICA

nn = 600; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[Sqrt[area2]/s]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

CROSSREFS

Cf. A000290, A188158, A228383.

Sequence in context: A186661 A186659 A196256 * A067249 A288321 A155191

Adjacent sequences:  A230488 A230489 A230490 * A230492 A230493 A230494

KEYWORD

nonn

AUTHOR

Michel Lagneau, Oct 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 22:37 EST 2019. Contains 329782 sequences. (Running on oeis4.)