login
A230469
T(n,k)=Number of nXk 0..2 arrays x(i,j) with each element horizontally, diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero
13
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 36, 114, 8, 0, 0, 216, 2398, 1384, 30, 0, 0, 1260, 35052, 76518, 16926, 108, 0, 0, 6912, 552720, 3062214, 2593962, 212124, 386, 0, 0, 38340, 8724560, 131421154, 281740616, 89087722, 2647098, 1376, 0, 0, 213192, 138661614
OFFSET
1,9
COMMENTS
Table starts
.0....0........0............0...............0..................0
.0....0........0...........36.............216...............1260
.0....2......114.........2398...........35052.............552720
.0....8.....1384........76518.........3062214..........131421154
.0...30....16926......2593962.......281740616........33169633760
.0..108...212124.....89087722.....26096227960......8449174734112
.0..386..2647098...3045192312...2412390974650...2147475302085202
.0.1376.33046400.104165339046.223089594072370.545932535826768684
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -a(n-2) -2*a(n-3)
k=3: [order 7]
k=4: [order 21]
k=5: [order 68]
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 6*a(n-1) -a(n-2) -12*a(n-3) +20*a(n-4) +24*a(n-5)
n=3: [order 16] for n>17
n=4: [order 57] for n>58
EXAMPLE
Some solutions for n=3 k=4
..0..1..1..0....0..1..1..1....0..1..1..0....0..0..1..0....0..2..1..2
..2..2..0..2....1..2..2..1....1..2..2..0....0..1..2..2....1..1..0..0
..1..0..1..2....1..0..0..1....0..1..0..1....1..2..0..1....0..0..2..2
CROSSREFS
Column 2 is A230269
Sequence in context: A179072 A073111 A229685 * A004076 A365974 A013369
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 20 2013
STATUS
approved