login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230447 T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n. 3
1, 1, 1, 2, 2, 2, 2, 4, 5, 3, 3, 6, 9, 8, 6, 3, 9, 16, 17, 14, 9, 4, 12, 25, 33, 32, 23, 15, 4, 16, 38, 58, 65, 55, 39, 24, 5, 20, 54, 96, 124, 120, 94, 63, 40, 5, 25, 75, 150, 220, 244, 215, 157, 103, 64, 6, 30, 100, 225, 371, 464, 459, 372, 261, 167, 104 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The terms in the right hand columns of triangle T(n, k) and the terms in the rows of the square array Tsq(n, k) represent the Kn1p sums of the ‘Races with Ties’ triangle A035317.

For the definitions of the Kn1p sums see A180662. This sequence is related to A230448.

The first few row sums are: 1, 2, 6, 14, 32, 68, 144, 299, 616, 1258, 2559, 5185, 10478, … .

LINKS

Table of n, a(n) for n=0..65.

FORMULA

T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.

T(n, k) = sum(A035317(n-i, n-k+i), i = 0..floor(k/2)), n >= 0 and 0 <= k <= n.

The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.

Tsq(n, k) = sum(A035317(n+k-i, n+i), i=0..floor(k/2)), n >= 0 and k >= 0.

Tsq(n, k) = A080239(2*n+k+1) - sum(A035317(2*n+k-i, i), i=0..n-1).

The G.f. generates the terms in the n-th row of the square array Tsq(n, k).

G.f.: a(n)/(4*(x-1)) + 1/(4*(x+1)) + (-1)^n*(x+2)/(10*(x^2+1)) - (A000032(2*n+3) + A000032(2*n+2)*x)/(5*(x^2+x-1)) + sum((-1)^(k+1) * A064831(n-k+1)/((x-1)^k), k= 2..n), n >= 0, with a(n) = A064831(n+1) + 2*A064831(n) - 2*A064831(n-1) + A064831(n-2).

EXAMPLE

The first few rows of triangle T(n, k) n >= 0 and 0 <= k <= n.

n/k 0   1   2    3    4     5     6     7

------------------------------------------------

0|  1

1|  1,  1

2|  2,  2,  2

3|  2,  4,  5,   3

4|  3,  6,  9,   8,   6

5|  3,  9, 16,  17,  14,    9

6|  4, 12, 25,  33,  32,   23,    15

7|  4, 16, 38,  58,  65,   55,    39,   24

The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.

n/k 0   1   2    3    4     5     6     7

------------------------------------------------

0|  1,  1,  2,   3,   6,    9,   15,   24

1|  1,  2,  5,   8,  14,   23,   39,   63

2|  2,  4,  9,  17,  32,   55,   94,  157

3|  2,  6, 16,  33,  65,  120,  215,  372

4|  3,  9, 25,  58, 124,  244,  459,  831

5|  3, 12, 38,  96, 220,  464,  924, 1755

6|  4, 16, 54, 150, 371,  835, 1759, 3514

7|  4, 20, 75, 225, 596, 1431, 3191, 6705

MAPLE

T := proc(n, k): add(A035317(n-i, n-k+i), i=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.

T := proc(n, k) option remember: if k=0 then return(A008619(n)) elif k=n then return(A080239(n+1)) else A230135(n, k) + procname(n-1, k) + procname(n-1, k-1) fi: end: A008619 := n -> floor(n/2) +1: A080239 := n -> add(combinat[fibonacci](n-4*k), k=0..floor((n-1)/4)): A230135 := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.

CROSSREFS

Cf. (Triangle columns) A008619, A002620, A175287, A080239

Cf. A035317, A230448, A230449, A230135, A080239, A034851, A228570

Sequence in context: A240674 A005866 A125584 * A029078 A131799 A078635

Adjacent sequences:  A230444 A230445 A230446 * A230448 A230449 A230450

KEYWORD

nonn,easy,tabl

AUTHOR

Johannes W. Meijer, Oct 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 06:30 EDT 2021. Contains 343199 sequences. (Running on oeis4.)