This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230410 After a(0)=0, a(n) = A230415(A219666(n),A219666(n-1)). 9
 0, 1, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 4, 2, 2, 2, 4, 2, 2, 2, 2, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 4, 2, 1, 3, 3, 3, 2, 4, 1, 3, 1, 3, 3, 3, 1, 3, 4, 2, 1, 2, 2, 2, 2, 3, 2, 2, 4, 3, 1, 3, 4, 2, 1, 2, 2, 2, 2, 3, 2, 1, 3, 2, 5, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS After zero, a(n) = number of positions where digits in the factorial base representations of successive nodes A219666(n-1) and A219666(n) in the infinite trunk of the factorial beanstalk differ from each other. LINKS Antti Karttunen, Table of n, a(n) for n = 0..3149 FORMULA a(0)=0, and for n>=1, a(n) = A230415(A219666(n),A219666(n-1)). For all n, a(A226061(n+1)) = A232094(n). EXAMPLE a(8) = 1, because A219666(8)=23, whose factorial base representation (A007623(23)) is '321', and A219666(7)=17, whose factorial base representation (A007623(17)) is '221', and they differ just in one digit position. a(9) = 3, because A219666(9)=25, '...01001' in factorial base, which differs from '...0321' in three digit positions. Note that A226061(4)=8 (A226061(n) tells the position of (n!)-1 in A219666), and 1+2+3 = 6 happens to be both a triangular number (A000217) and a factorial number (A000142). The next time 1 occurs in this sequence because of this coincidence is at x=A226061(16) (whose value is currently not known), as at that point A219666(x) = 16!-1 = 20922789887999, whose factorial base representation is (15,14,13,12,11,10,9,8,7,6,5,4,3,2,1), and A000217(15) = 120 = A000142(5), which means that A219666(x-1) = A219651(20922789887999) = 20922789887879, whose factorial base representation is (15,14,13,12,11,10,9,8,7,6,4,4,3,2,1), which differs only in one position from the previous. Of course 1's occur in this sequence for other reasons as well. MATHEMATICA nn = 1200; m = 1; While[m! < nn, m++]; m; f[n_] := IntegerDigits[n, MixedRadix[Reverse@ Range[2, m]]]; Join[{0}, Function[w, Count[Subtract @@ Map[PadLeft[#, Max@ Map[Length, w]] &, w], k_ /; k != 0]]@ Map[f@ # &, {#1, #2}] & @@@ Partition[#, 2, 1] &@ TakeWhile[Reverse@ NestWhileList[# - Total@ f@ # &, nn, # > 0 &], # <= 500 &]] (* Michael De Vlieger, Jun 27 2016, Version 10 *) PROG (Scheme) (define (A230410 n) (if (zero? n) n (A230415bi (A219666 n) (A219666 (- n 1))))) ;; Where bi-variate function A230415bi has been given in A230415. CROSSREFS Cf. A230415, A230406, A231717, A231719, A232094. A230422 gives the positions of ones. Sequence in context: A306459 A297788 A194342 * A044925 A323356 A319244 Adjacent sequences:  A230407 A230408 A230409 * A230411 A230412 A230413 KEYWORD nonn,base AUTHOR Antti Karttunen, Nov 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 07:19 EST 2019. Contains 329111 sequences. (Running on oeis4.)