login
a(n) = the largest k such that (k+1)! divides n; the number of trailing zeros in the factorial base representation of n (A007623(n)).
14

%I #32 Mar 10 2021 03:19:16

%S 0,1,0,1,0,2,0,1,0,1,0,2,0,1,0,1,0,2,0,1,0,1,0,3,0,1,0,1,0,2,0,1,0,1,

%T 0,2,0,1,0,1,0,2,0,1,0,1,0,3,0,1,0,1,0,2,0,1,0,1,0,2,0,1,0,1,0,2,0,1,

%U 0,1,0,3,0,1,0,1,0,2,0,1,0,1,0,2,0,1

%N a(n) = the largest k such that (k+1)! divides n; the number of trailing zeros in the factorial base representation of n (A007623(n)).

%C Many of the comments given in A055881 apply also here.

%C From _Amiram Eldar_, Mar 10 2021: (Start)

%C The asymptotic density of the occurrences of k is (k+1)/(k+2)!.

%C The asymptotic mean of this sequence is e - 2 = 0.718281... (A001113 - 2). (End)

%H Antti Karttunen, <a href="/A230403/b230403.txt">Table of n, a(n) for n = 1..10080</a>

%H Tyler Ball, Joanne Beckford, Paul Dalenberg, Tom Edgar, and Tina Rajabi, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Edgar/edgar3.html">Some Combinatorics of Factorial Base Representations</a>, J. Int. Seq., Vol. 23 (2020), Article 20.3.3.

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>

%F a(n) = A055881(n)-1.

%e In factorial number base representation (A007623), the numbers from 1 to 9 are represented as:

%e n A007623(n) a(n) (gives the number of trailing zeros)

%e 1 1 0

%e 2 10 1

%e 3 11 0

%e 4 20 1

%e 5 21 0

%e 6 100 2

%e 7 101 0

%e 8 110 1

%e 9 111 0

%t With[{b = MixedRadix[Range[12, 2, -1]]}, Array[LengthWhile[Reverse@ IntegerDigits[#, b], # == 0 &] &, 105]] (* _Michael De Vlieger_, Jun 03 2020 *)

%o (Scheme)

%o (define (A230403 n) (if (zero? n) 0 (let loop ((n n) (i 2)) (cond ((not (zero? (modulo n i))) (- i 2)) (else (loop (/ n i) (1+ i)))))))

%Y Cf. A001113, A055881. Bisection: A230404.

%Y A few sequences related to factorial base representation (A007623): A034968, A084558, A099563, A060130, A227130, A227132, A227148, A227149, A153880.

%Y Analogous sequence for binary system: A007814.

%K nonn,base,easy

%O 1,6

%A _Antti Karttunen_, Oct 31 2013