login
A230390
5*binomial(8*n+10,n)/(4*n+5).
7
1, 10, 125, 1760, 26650, 423752, 6978510, 117998400, 2036685765, 35738059500, 635627275767, 11433154297760, 207621482341000, 3801296492623560, 70092637731997100, 1300500163756675200, 24262157874835233000, 454847339247972377850, 8564398318045559667475
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=8, r=10.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=10.
MATHEMATICA
Table[5 Binomial[8 n + 10, n]/(4 n + 5), {n, 0, 30}]
PROG
(PARI) a(n) = 5*binomial(8*n+10, n)/(4*n+5);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/5))^10+x*O(x^n)); polcoeff(B, n)}
(Magma) [5*Binomial(8*n+10, n)/(4*n+5): n in [0..30]];
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 28 2013
STATUS
approved