|
|
A230377
|
|
The left Aurifeuillian factor of k^k + 1 for k congruent to 0, 2 or 3 (mod 4) and squarefree.
|
|
3
|
|
|
1, 1, 13, 113, 3541, 58367, 2826601, 19231, 113631466919, 9617835527609, 348275601426959, 35522826680397941, 241498479121, 8403855868042458448127, 1161044975606998832441701, 1272844589592126671, 10128165505710094110937686497, 4612290807753604561
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
The values of k are given by A230375.
Named after the French mathematician Léon-François-Antoine Aurifeuille (1822-1882). - Bernard Schott, Apr 25 2022
|
|
LINKS
|
Table of n, a(n) for n=1..18.
Richard P. Brent, On computing factors of cyclotomic polynomials, arXiv:1004.5466 [math.NT], 2010.
Eric Weisstein's World of Mathematics, Aurifeuillean Factorization.
Wikipedia, Léon-François-Antoine Aurifeuille.
Wikipedia, Aurifeuillean factorization.
|
|
EXAMPLE
|
58367 is in the sequence because it is an Aurifeuillian factor of 11^11+1.
|
|
CROSSREFS
|
Cf. A230375, A220983, A220984, A230375, A230376, A230378, A230379.
Sequence in context: A127827 A089569 A048383 * A254038 A221369 A095680
Adjacent sequences: A230374 A230375 A230376 * A230378 A230379 A230380
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Colin Barker, Oct 17 2013
|
|
STATUS
|
approved
|
|
|
|