login
A230344
Number of permutations of [2n+4] in which the longest increasing run has length n+4.
3
1, 10, 137, 2360, 49236, 1209936, 34288800, 1102187520, 39656131200, 1579837754880, 69064610186880, 3288126441600000, 169388400557376000, 9389435419203840000, 557323393281887232000, 35272416767753797632000, 2371290445442664345600000
OFFSET
0,2
COMMENTS
Also the number of ascending runs of length n+4 in the permutations of [2n+4].
LINKS
FORMULA
a(n) = (n^3+10*n^2+30*n+29)*(2*n+4)!/(n+6)! for n>0, a(0) = 1.
a(n) = A008304(2*n+4,n+4) = A122843(2*n+4,n+4).
MAPLE
a:= proc(n) option remember; `if`(n<2, 1+9*n, 2*(2*n+3)*(n+2)*
(n^3+10*n^2+30*n+29)*a(n-1)/((n+6)*(n^3+7*n^2+13*n+8)))
end:
seq(a(n), n=0..25);
CROSSREFS
A diagonal of A008304, A122843.
Sequence in context: A276131 A003377 A371394 * A348137 A318594 A065593
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 16 2013
STATUS
approved