|
|
A230329
|
|
Prime(prime(2*n)) - 2*prime(n).
|
|
1
|
|
|
1, 11, 31, 53, 87, 131, 157, 203, 237, 295, 339, 387, 465, 501, 523, 633, 679, 755, 833, 889, 941, 1013, 1051, 1231, 1253, 1297, 1391, 1455, 1523, 1597, 1659, 1801, 1825, 1991, 2053, 2115, 2235, 2321, 2385, 2457, 2551, 2657, 2727, 2843, 2905
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For n = 12239, 24046, 24140, 24255, ... a(n+1) = a(n), and for n = 2154, 2524, 2810, 3795, ... a(n+1) < a(n). What is the smallest number n such that a(n+2) <= a(n+1) <= a(n)? - Farideh Firoozbakht, Oct 18 2013
Using the Prime Number Theorem, prime(n) ~ n log n, the asymptotic behavior is the same as that of A217622, a(n) ~ 2n (log 2n) log(2n log 2n). - M. F. Hasler, Oct 19 2013
|
|
LINKS
|
Table of n, a(n) for n=1..45.
|
|
FORMULA
|
a(n) = A217622(n) - 2*A000040(n).
a(n) = A217622(n) - A100484(n). - Omar E. Pol, Oct 19 2013
|
|
MATHEMATICA
|
Table[Prime[Prime[2n]] - 2Prime[n], {n, 45}]
|
|
PROG
|
(PARI) A230329(n)=prime(prime(2*n))-2*prime(n) \\ M. F. Hasler, Oct 19 2013
|
|
CROSSREFS
|
Cf. A230098, A230285, A066066.
Sequence in context: A043904 A152293 A031287 * A232764 A057630 A057628
Adjacent sequences: A230326 A230327 A230328 * A230330 A230331 A230332
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Gerasimov Sergey, Oct 16 2013
|
|
EXTENSIONS
|
Corrected by R. J. Mathar, Oct 18 2013
|
|
STATUS
|
approved
|
|
|
|