login
A230307
a(n) = 139*n^2 - 2307*n + 3331.
1
3331, 1163, -727, -2339, -3673, -4729, -5507, -6007, -6229, -6173, -5839, -5227, -4337, -3169, -1723, 1, 2003, 4283, 6841, 9677, 12791, 16183, 19853, 23801, 28027, 32531, 37313, 42373, 47711, 53327, 59221, 65393, 71843, 78571, 85577, 92861, 100423, 108263
OFFSET
0,1
COMMENTS
|a(n)| are distinct noncomposite numbers for n = 0 to 35.
The values of this polynomial are never divisible by a prime less than 53.
FORMULA
G.f.: (3331 - 8830*x + 5777*x^2)/(1 - x)^3.
MAPLE
seq(139*n^2-2307*n+3331, n=0..37);
MATHEMATICA
Table[139*n^2 - 2307*n + 3331, {n, 0, 37}]
LinearRecurrence[{3, -3, 1}, {3331, 1163, -727}, 40] (* or *) CoefficientList[ Series[(3331-8830x+5777x^2)/(1-x)^3, {x, 0, 40}], x] (* Harvey P. Dale, Jul 06 2021 *)
PROG
(Magma) [139*n^2-2307*n+3331 : n in [0..37]];
(PARI) for(n=0, 37, print1(139*n^2-2307*n+3331, ", "));
CROSSREFS
Sequence in context: A253865 A253538 A147881 * A043504 A251331 A261656
KEYWORD
sign,easy
AUTHOR
STATUS
approved