This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230231 Number of permutations of [n] avoiding adjacent step pattern {up}^8. 7
 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362879, 3628781, 39916492, 478996716, 6226941864, 87176969880, 1307651304960, 20922368987520, 355679390626560, 6402213152423659, 121641748198554547, 2432828930036156696, 51089280818439941448, 1123961390341566969192 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..450 Mingjia Yang, Doron Zeilberger, Increasing Consecutive Patterns in Words, arXiv:1805.06077 [math.CO], 2018. FORMULA E.g.f.: 1 / Sum_{n>=0} (9*n+1-x)*x^(9*n)/(9*n+1)!. a(n)/n! ~ 1.0000195665100891649606434859189953881417919885320660432331680939719... * (1/r)^n, where r = 1.0000024802134092668222044475851121972165291678378389183730077680957571... is the root of the equation Sum_{n>=0} (r^(9*n)/(9*n)! - r^(9*n+1)/(9*n+1)!) = 0. - Vaclav Kotesovec, Jan 17 2015 E.g.f.: 1/(1/3 * cos((sqrt(3)*x)/2) * cosh(x/2) + 2/9 * cos(x * sin(Pi/9)) * cosh(x * cos(Pi/9)) + 2/9 * cos(Pi/9) * cos(x * sin(Pi/9)) * cosh(x * cos(Pi/9)) + 2/9 * cos(x * cos(Pi/18)) * cosh(x * sin(Pi/18)) + 2/9 * cos(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9)))* cosh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9))) - 1/9 * cos(Pi/9) * cos(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9))) * cosh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9))) - 2/9 * cos(x * cos(Pi/18))* cosh(x * sin(Pi/18)) * sin(Pi/18) - (cos(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9)))* cosh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9)))* sin(Pi/9))/(3 * sqrt(3)) - (cosh(x/2) * sin((sqrt(3)*x)/2))/(3 * sqrt(3)) - 2/9 * cos(Pi/18) * cosh(x * sin(Pi/18)) * sin(x * cos(Pi/18)) - (cos(Pi/9) * cosh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9)))* sin(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9))))/ (3 * sqrt(3)) + 1/9 * cosh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9)))* sin(Pi/9) * sin(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9))) - 2/9 * cosh(x * cos(Pi/9)) * sin(Pi/9)* sin(x * sin(Pi/9)) - 1/3 * cos((sqrt(3)*x)/2)* sinh(x/2) + (sin((sqrt(3)*x)/2) * sinh(x/2))/ (3 * sqrt(3)) - 2/9 * cos(x * sin(Pi/9))* sinh(x * cos(Pi/9)) - 2/9 * cos(Pi/9) * cos(x * sin(Pi/9))* sinh(x * cos(Pi/9)) + 2/9 * sin(Pi/9) * sin(x * sin(Pi/9))* sinh(x * cos(Pi/9)) + 2/9 * cos(x * cos(Pi/18))* sinh(x * sin(Pi/18)) - 2/9 * cos(x * cos(Pi/18))* sin(Pi/18) * sinh(x * sin(Pi/18)) - 2/9 * cos(Pi/18)* sin(x * cos(Pi/18)) * sinh(x * sin(Pi/18)) + 2/9 * cos(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9)))* sinh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9))) - 1/9 * cos(Pi/9) * cos(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9))) * sinh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9))) - (cos(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9))) * sin(Pi/9)* sinh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9))))/ (3 * sqrt(3)) - (cos(Pi/9) * sin(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9)))* sinh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9))))/ (3 * sqrt(3)) + 1/9 * sin(Pi/9)* sin(x/2*(sqrt(3) * cos(Pi/9) - sin(Pi/9)))* sinh(x/2*(cos(Pi/9) + sqrt(3) * sin(Pi/9)))). - Vaclav Kotesovec, Feb 01 2015 MAPLE b:= proc(u, o, t) option remember; `if`(u+o=0, 1,       `if`(t<7, add(b(u+j-1, o-j, t+1), j=1..o), 0)+       add(b(u-j, o+j-1, 0), j=1..u))     end: a:= n-> b(n, 0, 0): seq(a(n), n=0..30); MATHEMATICA nn=20; r=8; a=Apply[Plus, Table[Normal[Series[y x^(r+1)/(1-Sum[y x^i, {i, 1, r}]), {x, 0, nn}]][[n]]/(n+r)!, {n, 1, nn-r}]]/.y->-1; Range[0, nn]! CoefficientList[Series[1/(1-x-a), {x, 0, nn}], x] (* Geoffrey Critzer, Feb 25 2014 *) CoefficientList[Series[1/(HypergeometricPFQ[{}, {1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 8/9}, x^9/387420489] - x*HypergeometricPFQ[{}, {2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 8/9, 10/9}, x^9/387420489]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 01 2015 *) CROSSREFS Cf. A049774, A117158, A177523, A177533, A177553, A230051, A230232, A230233. Column k=255 of A242784. Sequence in context: A226440 A248841 A072132 * A066459 A269221 A071937 Adjacent sequences:  A230228 A230229 A230230 * A230232 A230233 A230234 KEYWORD nonn AUTHOR Alois P. Heinz, Oct 12 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 13:06 EDT 2019. Contains 328030 sequences. (Running on oeis4.)