login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes p such that 2*p+1 is prime and 2*p+3 is not prime.
4

%I #22 Sep 08 2022 08:46:06

%S 3,11,23,41,83,131,179,191,233,239,251,281,293,359,419,431,443,491,

%T 593,641,653,683,719,761,911,953,1019,1031,1049,1103,1223,1229,1289,

%U 1409,1439,1451,1481,1511,1601,1811,1889,1901,1931,1973,2003,2039,2069,2141

%N Primes p such that 2*p+1 is prime and 2*p+3 is not prime.

%C Intersection of A005384 and A163769. - _Felix Fröhlich_, Jan 14 2017

%H Vincenzo Librandi, <a href="/A230117/b230117.txt">Table of n, a(n) for n = 1..1000</a>

%e 23 is in the sequence because 2*23+1=47 (prime) and 2*23+3=49 (not prime).

%t Select[Range[10^6],PrimeQ[#]&& PrimeQ[2#+1]&&!PrimeQ[2#+3]&]

%o (Magma) [p: p in PrimesUpTo(2500)| IsPrime(2*p+1) and not IsPrime(2*p+3)];

%o (PARI) is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && !ispseudoprime(2*n+3) \\ _Felix Fröhlich_, Jan 14 2017

%Y Cf. A005384, A023204, A053176, A126107, A163769, A230039.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Oct 10 2013