This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230115 Numbers n such that tau(n+1) - tau(n) = 2; where tau(n) = the number of divisors of n (A000005). 5
 5, 7, 13, 27, 37, 51, 61, 62, 73, 74, 91, 115, 123, 146, 153, 157, 164, 187, 188, 193, 206, 235, 245, 267, 274, 277, 278, 284, 291, 313, 355, 356, 362, 369, 386, 397, 403, 411, 421, 422, 423, 425, 427, 428, 451, 457, 538, 541, 605, 613, 637, 657, 661, 667, 673 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n such that A051950(n+1) = 2. Numbers n such that A049820(n) - A049820(n+1) = 1. Sequence of starts of first run of n (n>=2) consecutive integers m_1, m_2, ..., m_n such that tau(m_k) - tau(m_k-1) = 2, for all k=n...2: 5, 61, 421, ... (a(5) > 100000); example for n=4: tau(421) = 2, tau(422) = 4, tau(423) = 6, tau(424) = 8. LINKS Jaroslav Krizek, Table of n, a(n) for n = 1..2000 EXAMPLE Number 7 is in sequence because tau(8) - tau(7) = 4 - 2 = 2. MATHEMATICA Select[ Range[ 50000], DivisorSigma[0, # ] + 2 == DivisorSigma[0, # + 1] &] Flatten[Position[Partition[DivisorSigma[0, Range[700]], 2, 1], _? (#[[2]]- #[[1]] == 2&), {1}, Heads->False]] (* Harvey P. Dale, Aug 03 2014 *) PROG (PARI) isok(n) = (numdiv(n+1) - numdiv(n)) == 2; \\ Michel Marcus, Mar 26 2017 (Python) from sympy.ntheory import divisor_count print[n for n in xrange (1000) if divisor_count(n + 1) - divisor_count(n) == 2] # Indranil Ghosh, Mar 26 2017 CROSSREFS Cf. A000005, A055927 (numbers n such that tau(n+1) - tau(n) = 1). Subsequence of A162318. - Michel Marcus, Mar 26 2017 Sequence in context: A124307 A158294 A090610 * A182342 A178648 A241859 Adjacent sequences:  A230112 A230113 A230114 * A230116 A230117 A230118 KEYWORD nonn,changed AUTHOR Jaroslav Krizek, Oct 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.