login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230111 Composite numbers n such that sum_{i=1..k} (p_i/(p_i+1)) - product_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of n (with multiplicity). 2
8, 10, 64, 512, 720, 800, 1320, 1944, 4096, 5184, 5760, 6400, 7200, 8370, 23520, 32768, 41472, 44000, 46080, 47040, 51200, 69580, 74088, 76096, 84672, 93000, 95040, 105600, 129360, 235200, 240000, 262144, 331776, 368640, 409600, 518400, 546480, 576000, 640000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..39.

EXAMPLE

Prime factors of 7200 are 2^5, 3^2 and 5^2.

sum_{i=1..9} (p(i)/(p(i)+1))=5*[2/(2+1)]+2*[3/(3+1)]+2*[5/(5+1)]=13/2.

product_{i=1..9} (p(i)/(p(i)-1))=[2/(2+1)]^5*[3/(3-1)]^2*[5/(5-1)]^2=225/2.

Their sum is integer: 13/2 - 225/2 = -106.

MAPLE

with(numtheory); P:=proc(i) local b, d, n, p;

for n from 2 to i do p:=ifactors(n)[2];

b:=add(op(2, d)*op(1, d)/(op(1, d)+1), d=p)-mul((op(1, d)/(op(1, d)-1))^op(2, d), d=p);

if trunc(b)=b then print(n); fi; od; end: P(10^7);

CROSSREFS

Cf. A199767, A198391, A227034, A227248, A230110, A230112.

Sequence in context: A167303 A025634 A038288 * A204324 A070276 A002286

Adjacent sequences:  A230108 A230109 A230110 * A230112 A230113 A230114

KEYWORD

nonn

AUTHOR

Paolo P. Lava, Oct 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 24 21:18 EDT 2017. Contains 287008 sequences.