login
Values of d such that the equation x^2 - d*y^2 = 2*d has integer solutions.
1

%I #14 Jun 22 2019 12:48:31

%S 2,3,6,8,11,12,18,19,22,24,27,32,38,43,44,48,50,51,54,59,66,67,72,75,

%T 76,83,86,88,96,98,99,102,107,108,114,118,123,128,131,134,139,146,147,

%U 150,152,162,163,166,171,172,176,178,179

%N Values of d such that the equation x^2 - d*y^2 = 2*d has integer solutions.

%e 43 appears in the sequence because the equation x^2 - 43*y^2 = 86 has integer solutions, such as (x,y) = (387,59).

%t Select[Range[200],FindInstance[x^2-#*y^2==2*#,{x,y},Integers]!={}&] (* _Harvey P. Dale_, Jun 22 2019 *)

%o (PARI) is(n)=sol=bnfisintnorm(bnfinit(z^2-n),2*n);if(!#sol,0,p=polcoeff(sol[1],0);p==floor(p)) \\ _Ralf Stephan_, Oct 19 2013

%Y Cf. A172000, A230109.

%K nonn

%O 1,1

%A _Colin Barker_, Oct 09 2013