

A230092


Numbers of the form k + wt(k) for exactly three distinct k, where wt(k) = A000120(k) is the binary weight of k.


12



129, 134, 386, 391, 515, 518, 642, 647, 899, 904, 1028, 1030, 1154, 1159, 1411, 1416, 1540, 1543, 1667, 1672, 1924, 1929, 2178, 2183, 2435, 2440, 2564, 2567, 2691, 2696, 2948, 2953, 3077, 3079, 3203, 3208, 3460, 3465, 3589, 3592, 3716, 3721, 3973, 3978, 4226
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The positions of entries equal to 3 in A228085, or numbers that appear exactly thrice in A092391.
Numbers that can be expressed as the sum of distinct terms of the form 2^n+1, n=0,1,... in exactly three ways.


LINKS

Reinhard Zumkeller and Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
Index entries for Colombian or self numbers and related sequences


MAPLE

For Maple code see A230091.


PROG

(Haskell)
a230092 n = a230092_list !! (n1)
a230092_list = filter ((== 3) . a228085) [1..]
 Reinhard Zumkeller, Oct 13 2013


CROSSREFS

Cf. A000120, A010061, A228088, A230058, A230091.
Cf. A227915.
Sequence in context: A298720 A025332 A025324 * A060878 A127337 A185347
Adjacent sequences: A230089 A230090 A230091 * A230093 A230094 A230095


KEYWORD

nonn,base


AUTHOR

N. J. A. Sloane, Oct 10 2013


STATUS

approved



