|
|
A230053
|
|
Recurrence a(n+2) = (n+2)*a(n+1)*a(n), with a(0) = a(1) = 1.
|
|
1
|
|
|
1, 1, 2, 6, 48, 1440, 414720, 4180377600, 13869489586176000, 521817332305350780518400000, 72373400562952038729626622187536384000000000, 415422642927888257689749131592471020852730170822782196121600000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Numbers of decimal digits in a(n) for 0 <= n <= 20: 1, 1, 1, 1, 2, 4, 6, 10, 17, 27, 44, 72, 117, 190, 307, 498, 806, 1305, 2112, 3417, 5530. - Robert Israel, Oct 09 2017
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..16
|
|
FORMULA
|
a(n) = Product_{k=0..n-1} (n-k+1)^Fibonacci(k).
|
|
MAPLE
|
f:= proc(n) option remember; n*procname(n-1)*procname(n-2) end proc:
f(0):= 1: f(1):= 1:
map(f, [$0..12]); # Robert Israel, Oct 08 2017
|
|
MATHEMATICA
|
RecurrenceTable[{a[n + 2] == (n + 2) a[n + 1] a[n], a[0] == a[1] == 1}, a, {n, 0, 12}] (* or *)
Table[Product[(n - k + 1)^Fibonacci[k], {k, 0, n - 1}], {n, 0, 12}]
|
|
CROSSREFS
|
Cf. A000045.
Sequence in context: A063744 A141609 A096313 * A245283 A126023 A088679
Adjacent sequences: A230050 A230051 A230052 * A230054 A230055 A230056
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emanuele Munarini, Oct 08 2017
|
|
STATUS
|
approved
|
|
|
|