login
A230042
Palindromic primes with strictly increasing product of digits.
1
2, 3, 5, 7, 181, 191, 353, 373, 383, 727, 757, 787, 797, 19891, 19991, 34843, 35753, 36563, 37573, 38783, 74747, 75557, 76667, 77977, 78787, 78887, 79997, 1987891, 1988891, 1998991, 3479743, 3487843, 3569653, 3586853, 3589853, 3689863, 3698963, 3799973
OFFSET
1,1
COMMENTS
a(1)=2; a(n+1) is the smallest palindromic prime with product of digits > product of digits of a(n).
LINKS
Shyam Sunder Gupta and Chai Wah Wu, Table of n, a(n) for n = 1..200 (terms for n = 1..128 from Shyam Sunder Gupta)
EXAMPLE
a(6) = 191, product of digits is 9; a(7) = 353, product of digits is 45 and 45 > 9.
MATHEMATICA
a = {}; t = 0; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z], s = Apply[Times, IntegerDigits[z]]; If[s > t, t = s; AppendTo[a, z]]], {n, 10^4}]; a
nxt[{p_, d_}]:=Module[{n=NextPrime[p]}, While[!PalindromeQ[n]||Times@@ IntegerDigits[ n]<=d, n=NextPrime[n]]; {n, Times@@IntegerDigits[n]}]; NestList[nxt, {2, 2}, 40][[All, 1]] (* Harvey P. Dale, Sep 30 2018 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Shyam Sunder Gupta, Oct 06 2013
STATUS
approved