login
A230029
Primes p such that f(f(p)) is prime, where f(x) = x^4-x^3-x^2-x-1.
0
3, 487, 547, 877, 1063, 1291, 1579, 1657, 2287, 2797, 3343, 3793, 4909, 4957, 6163, 6571, 7393, 8461, 8521, 8563, 9631, 11257, 11863, 12211, 12757, 12907, 13063, 13567, 13999, 14983, 15427, 15739, 16087, 16651, 16699, 17419, 17713, 17977
OFFSET
1,1
EXAMPLE
3 is prime and (3^4-3^3-3^2-3-1)^4 - (3^4-3^3-3^2-3-1)^3 - (3^4-3^3-3^2-3-1)^2 - (3^4-3^3-3^2-3-1) - 1 = 2755117 is prime. Thus, 3 is a member of this sequence.
PROG
(Python)
import sympy
from sympy import isprime
def f(x):
..return x**4-x**3-x**2-x-1
{print(p) for p in range(10**5) if isprime(p) and isprime(f(f(p)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Derek Orr, Feb 23 2014
STATUS
approved