login
Triangular array: t(n, k) = number of occurrences of k as the number of outliers in all the partitions of n.
1

%I #21 Oct 24 2023 10:33:20

%S 1,0,2,1,0,2,1,2,0,2,1,2,2,0,2,1,2,4,2,0,2,1,4,2,4,2,0,2,2,2,6,2,6,2,

%T 0,2,2,6,2,8,2,6,2,0,2,2,4,12,2,8,2,8,2,0,2,2,8,6,14,2,10,2,8,2,0,2,3,

%U 6,14,8,18,2,10,2,10,2,0,2,3,10,10,20,10

%N Triangular array: t(n, k) = number of occurrences of k as the number of outliers in all the partitions of n.

%C Definitions: the self-conjugate portion of a partition p is the portion of the Ferrers graph of p that remains unchanged when p is reflected about its principal diagonal. The outliers of p are the nodes of the Ferrers graph that lie outside the self-conjugate portion of p.

%C Sum of numbers in row n is A000041(n).

%C t(n,k) is the number of partitions p of n such that d(p,p*) = k, where d is the distance function introduced in A366156 and p* is the conjugate of p. - _Clark Kimberling_, Oct 03 2023

%e The first 9 rows:

%e 1

%e 0 2

%e 1 0 2

%e 1 2 0 2

%e 1 2 2 0 2

%e 1 2 4 2 0 2

%e 1 4 2 4 2 0 2

%e 2 2 6 2 6 2 0 2

%e 2 6 2 8 2 6 2 0 2

%e The Ferrers graph of the partition p = [4,4,1,1] of 10 follows:

%e 1 1 1 1

%e 1 1 1 1

%e 1

%e 1

%e The self-conjugate portion of p is

%e 1 1 1 1

%e 1 1

%e 1

%e 1

%e so that the number of outliers of p is 2.

%t ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; conjugatePartition[part_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[part]; selfConjugatePortion[list_] := ferrersMatrix[#]*ferrersMatrix[conjugatePartition[#]] &[list]; outliers[list_] := Count[Flatten[ferrersMatrix[#] - selfConjugatePortion[#] &[list]], 1]; a[n_] := Map[outliers, IntegerPartitions[n]]; t = Table[Count[a[n], k], {n, 1, 13}, {k, 0, n - 1}]

%t u = Flatten[t]

%t (* _Peter J. C. Moses_, Feb 21 2014 *)

%Y Cf. A000041, A366156.

%K nonn,tabl,easy

%O 1,3

%A _Clark Kimberling_, Feb 23 2014