

A230004


Numbers n such that phi(n) + sigma(n) = reversal(n) + 4.


6




OFFSET

1,1


COMMENTS

If p=5*10^m1 is prime (m is a term of A056712) then p is in the sequence.
Let p(m,n) = 10^(m+3)*(7*10^(m+2)+92)*(10^((m+4)*n)1)/(10^(m+4)1) +7*10^(m+1)+9, if m>0, n>=0 and p(m,n) is prime then 4*p(m,n) is in the sequence.
All known terms are of these two forms.
What is the smallest term of the sequence which is not of the form p or 4*p where p is prime?
Note that a(2)=4*p(1,0), a(5)=4*p(3,0), a(7)=4*p(5,0) and a(8)=4*p(1,1).


LINKS

Table of n, a(n) for n=1..9.


EXAMPLE

phi(499)+sigma(499) = 498+500 = 994+4 = reversal(499)+4, so 499 is in the sequence.


MATHEMATICA

r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[1, n] + EulerPhi[n] == r[n] + 4, Print[n]], {n, 1050000000}]


PROG

(PARI) is(n)=subst(Polrev(digits(n)), 'x, 10)+4==eulerphi(n)+sigma(n) \\ Charles R Greathouse IV, Nov 08 2013


CROSSREFS

Cf. A000010, A000203, A004086, A056712, A230005.
Sequence in context: A243957 A259890 A178044 * A203735 A093945 A184146
Adjacent sequences: A230001 A230002 A230003 * A230005 A230006 A230007


KEYWORD

nonn,base


AUTHOR

Farideh Firoozbakht, Nov 07 2013


EXTENSIONS

a(9) from Giovanni Resta, Feb 06 2014


STATUS

approved



