This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230002 Array of coefficients of numerator polynomials of the rational function p(n, x - 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x). 2
 1, -1, 0, 1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS Row n has 2n-1 terms.  If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 + 4) are zeros of q(n,x).  Appears to be a signed version of A071028. LINKS EXAMPLE First 5 rows: (1}, (-1,0,1), (1,0,-1,0,1), (-1,0,1,0,-1,0,1). First 5 polynomials:  1, -1 + x^2, 1 - x^2 + x^4, -1 + x^2 - x^4 + x^6. MATHEMATICA p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}] f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]] g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]] h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]] t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]];  (* A229995 *) t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]];  (* A230002 *) t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]];  (* A059317 *) CROSSREFS Cf. A229995. Sequence in context: A054521 A014240 A014471 * A071028 A286987 A011635 Adjacent sequences:  A229999 A230000 A230001 * A230003 A230004 A230005 KEYWORD tabf,sign,easy AUTHOR Clark Kimberling, Nov 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 18:53 EST 2019. Contains 320165 sequences. (Running on oeis4.)