login
A229995
Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x).
2
1, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 5, 0, 5, 0, 1, 1, 0, 7, 0, 13, 0, 7, 0, 1, 1, 0, 9, 0, 25, 0, 25, 0, 9, 0, 1, 1, 0, 11, 0, 41, 0, 63, 0, 41, 0, 11, 0, 1, 1, 0, 13, 0, 61, 0, 129, 0, 129, 0, 61, 0, 13, 0, 1, 1, 0, 15, 0, 85, 0, 231, 0, 321, 0, 231, 0, 85, 0
OFFSET
0,7
COMMENTS
Deleting the 0's leaves A008288 (Delannoy numbers as a triangle). If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 - 4) are zeros of q(n,x).
EXAMPLE
First 4 rows:
1
1 0 1
1 0 3 0 1
1 0 5 0 5 0 1
MATHEMATICA
p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}]
f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]]
g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]]
h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]]
t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]]; (* A229995 *)
t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]]; (* A230002 *)
t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]]; (* A059317 *)
CROSSREFS
Sequence in context: A303877 A112743 A230427 * A119467 A166353 A110235
KEYWORD
nonn,tabf,easy
AUTHOR
Clark Kimberling, Nov 07 2013
STATUS
approved