The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229995 Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x). 2
 1, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 5, 0, 5, 0, 1, 1, 0, 7, 0, 13, 0, 7, 0, 1, 1, 0, 9, 0, 25, 0, 25, 0, 9, 0, 1, 1, 0, 11, 0, 41, 0, 63, 0, 41, 0, 11, 0, 1, 1, 0, 13, 0, 61, 0, 129, 0, 129, 0, 61, 0, 13, 0, 1, 1, 0, 15, 0, 85, 0, 231, 0, 321, 0, 231, 0, 85, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Deleting the 0's leaves A008288 (Delannoy numbers as a triangle).  If r is a zero of p(n,x) then (1/2)(r +- sqrt(r^2 - 4) are zeros of q(n,x). LINKS EXAMPLE First 4 rows: 1 1 0 1 1 0 3 0 1 1 0 5 0 5 0 1 MATHEMATICA p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}] f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]] g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]] h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]] t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]];  (* A229995 *) t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]];  (* A230002 *) t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]];  (* A059317 *) CROSSREFS Cf. A230002, A008288. Sequence in context: A303877 A112743 A230427 * A119467 A166353 A110235 Adjacent sequences:  A229992 A229993 A229994 * A229996 A229997 A229998 KEYWORD nonn,tabf,easy AUTHOR Clark Kimberling, Nov 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 09:24 EDT 2020. Contains 334721 sequences. (Running on oeis4.)