login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229944 Triangle read by rows in which T(2n-2,k) = n/k if k divides n and n/k > sqrt(n), otherwise 0, for n >= 2. Also T(2n-1,k) = k if k divides n, otherwise 0, for n >= 1. Row lengths are the same row lengths of A229940. 1
1, 2, 1, 3, 1, 4, 1, 2, 5, 0, 1, 0, 6, 3, 1, 2, 7, 0, 1, 0, 8, 4, 1, 2, 9, 0, 1, 0, 3, 10, 5, 0, 1, 2, 0, 11, 0, 0, 1, 0, 0, 12, 6, 4, 1, 2, 3, 13, 0, 0, 1, 0, 0, 14, 7, 0, 1, 2, 0, 15, 0, 5, 1, 0, 3, 16, 8, 0, 1, 2, 0, 4, 17, 0, 0, 0, 1, 0, 0, 0, 18, 9, 6, 0, 1, 2, 3, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The positive terms are also the divisors associated with the exposed endpoints of the toothpick structure of A229950 which is related to A000005. Note that the exposed toothpick endpoints are equivalent to the vertices of the graph mentioned in A229940. See link section.

LINKS

Table of n, a(n) for n=1..88.

Omar E. Pol, Illustration of initial terms of the divisor function (A000005), see the third picture.

MAPLE

Triangle begins:

1;

2;

1;

3;

1;

4;

1,  2;

5,  0;

1,  0;

6,  3;

1,  2;

7,  0;

1,  0;

8,  4;

1,  2;

9,  0;

1,  0,  3;

10, 5,  0;

1,  2,  0;

11, 0,  0;

1,  0,  0;

12, 6,  4;

1,  2,  3;

13, 0,  0;

1,  0,  0;

14, 7,  0;

1,  2,  0;

15, 0,  5;

1,  0,  3;

16, 8,  0;

1,  2,  0,  4;

...

CROSSREFS

Cf. A000005, A000203, A229940, A229942, A229950, A229951.

Sequence in context: A255810 A210256 A332422 * A218533 A328578 A094741

Adjacent sequences:  A229941 A229942 A229943 * A229945 A229946 A229947

KEYWORD

nonn,tabf

AUTHOR

Omar E. Pol, Oct 05 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 22:57 EST 2020. Contains 332216 sequences. (Running on oeis4.)