%I
%S 1,0,5,3,4,9,7,9,4,2,3,8,6,8,3,1,2,7,5,7,2,0,1,6,4,6,0,9,0,5,3,4,9,7,
%T 9,4,2,3,8,6,8,3,1,2,7,5,7,2,0,1,6,4,6,0,9,0,5,3,4,9,7,9,4,2,3,8,6,8,
%U 3,1,2,7,5,7,2,0,1,6,4,6,0,9,0,5,3,4,9,7,9,4,2,3,8,6,8,3,1,2,7,5,7,2,0,1,6,4,6,0,9
%N Decimal expansion of 256/243, the Pythagorean semitone.
%C The Pythagorean diatonic semitone is one of the musical intervals. Has a ratio of 256/243, and is often called the Pythagorean limma. It is also sometimes called the Pythagorean minor semitone.
%C After the initial term the sequence has period 27, repeat: 0, 5, 3, 4, 9, 7, 9, 4, 2, 3, 8, 6, 8, 3, 1, 2, 7, 5, 7, 2, 0, 1, 6, 4, 6, 0, 9.
%D J. M. Merino de la Fuente, Las vibraciones de la música, Editorial Club Universitario (2006), 133.
%D Alberto Rojo, La física en la vida cotidiana, Siglo Veintiuno Editores (2011), 137.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Semitone">Semitone</a>
%H <a href="https://oeis.org/wiki/Index_to_OEIS:_Section_Mu#music">OEIS index entry for music</a>
%H <a href="https://oeis.org/wiki/The_multifaceted_reach_of_the_OEIS#Music">The multifaceted reach of the OEIS: Music</a>
%F A229948/A221363 = (3^7/2^11)/(3^12/2^19) = 2^8/3^5 = 256/243.
%e 1.053497942386831275720164609...
%t RealDigits[256/243,10,120][[1]] (* _Harvey P. Dale_, Jul 17 2019 *)
%Y Cf. A010774, A221363, A229948, A230437.
%K nonn,cons
%O 1,3
%A _Omar E. Pol_, Oct 25 2013
