login
A229925
Numbers of espalier polycubes of a given volume in dimension 5.
1
1, 5, 9, 23, 31, 71, 87, 173, 223, 379, 471, 801, 951, 1495, 1851, 2736, 3282, 4832, 5708, 8126, 9704, 13290, 15694, 21496, 25038, 33396, 39330, 51452
OFFSET
1,2
COMMENTS
A (d+1)-pyramid polycube is a (d+1)-polycube obtained by gluing together horizontal (d+1)-plateaux (parallelepipeds of height 1) in such a way that the cell (0,0,...,0) belongs to the first plateau and each cell with coordinates (0,n_1,...,n_d) belonging to the first plateau is such that n_1 , ... , n_d >= 0.
If the cell with coordinates (n_0,n_1,...,n_d) belongs to the (n_0+1)-st plateau (n_0>0), then the cell with coordinates (n_0-1, n_1, ... ,n_d) belongs to the n_0-th plateau.
A (d+1)-espalier is a (d+1)-pyramid such that each plateau contains the cell (n_0,0,...,0).
CROSSREFS
Sequence in context: A263830 A343803 A194802 * A280030 A074340 A079993
KEYWORD
nonn
AUTHOR
STATUS
approved