login
a(n) = q^9/6+5*q^8/6+2*q^7/3-q^6/6-5*q^5/6+q^4/3 where q = n-th prime power A000961(n).
2

%I #9 Aug 22 2020 17:32:26

%S 1,352,9909,107776,698125,12045817,37679104,103495401,584190541,

%T 2487920149,15207694336,25846158097,68520305701,367691205289,

%U 766959765625,1513188079677,2846113596901,5135516500321,6803021627392,24650159312557,61346708983561,93685639700269,206700247118737,299545983486001

%N a(n) = q^9/6+5*q^8/6+2*q^7/3-q^6/6-5*q^5/6+q^4/3 where q = n-th prime power A000961(n).

%H L. Kaylor, D. Offner, <a href="https://projecteuclid.org/euclid.involve/1513733722">Counting matrices over a finite field with all eigenvalues in the field</a>, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. [<a href="http://dx.doi.org/10.2140/involve.2014.7.627">DOI</a>]

%Y Cf. A000961, A229738, A229739, A255500, A255501.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Oct 05 2013