login
A229738
a(n) = p^2*(p^2+2*p-1)/2, where p = prime(n).
5
14, 63, 425, 1519, 8591, 16393, 46529, 71839, 151823, 377609, 491071, 987049, 1480961, 1787983, 2542559, 4092713, 6262319, 7148041, 10374079, 13061231, 14585473, 19964959, 24297503, 32072129, 45172609, 53055401, 57362863, 66759119, 71868169, 82960193, 132112639, 149489471, 178699649, 189326479, 249739049
OFFSET
1,1
LINKS
L. Kaylor, D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. [DOI]
Michael Knapp, Two by Two Matrices with Both Eigenvalues in Z/pZ, Math. Mag., Vol. 79, No. 2, April 2006.
MATHEMATICA
Table[Prime[n]^2 (Prime[n]^2 + 2 Prime[n] - 1)/2, {n, 40}] (* Bruno Berselli, Oct 07 2013 *)
#^2 (#^2+2#-1)/2&/@Prime[Range[40]] (* Harvey P. Dale, Mar 13 2017 *)
PROG
(Magma) [p^2*(p^2+2*p-1)/2: p in PrimesUpTo(200)]; // Bruno Berselli, Oct 07 2013
(PARI) a(n)=p=prime(n); p^2*(p^2+2*p-1)/2 \\ Anders Hellström, Sep 04 2015
(PARI) lista(nn) = forprime(p=2, nn, print1(p^2*(p^2+2*p-1)/2, ", ")); \\ Michel Marcus, Sep 04 2015
CROSSREFS
Sequence in context: A229739 A339136 A221909 * A239856 A214483 A275179
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 05 2013
STATUS
approved