login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229738 a(n) = p^2*(p^2+2*p-1)/2, where p = prime(n). 5
14, 63, 425, 1519, 8591, 16393, 46529, 71839, 151823, 377609, 491071, 987049, 1480961, 1787983, 2542559, 4092713, 6262319, 7148041, 10374079, 13061231, 14585473, 19964959, 24297503, 32072129, 45172609, 53055401, 57362863, 66759119, 71868169, 82960193, 132112639, 149489471, 178699649, 189326479, 249739049 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..1000

L. Kaylor, D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645, DOI: 10.2140/involve.2014.7.627.

Michael Knapp, Two by Two Matrices with Both Eigenvalues in Z/pZ,  Math. Mag., Vol. 79, No. 2, April 2006.

G. Olsavsky, The Number of 2 by 2 Matrices over Z/pZ with Eigenvalues in the Same Field, Math. Mag., 76 (2003), 314-317.

MATHEMATICA

Table[Prime[n]^2 (Prime[n]^2 + 2 Prime[n] - 1)/2, {n, 40}] (* Bruno Berselli, Oct 07 2013 *)

#^2 (#^2+2#-1)/2&/@Prime[Range[40]] (* Harvey P. Dale, Mar 13 2017 *)

PROG

(MAGMA) [p^2*(p^2+2*p-1)/2: p in PrimesUpTo(200)]; // Bruno Berselli, Oct 07 2013

(PARI) a(n)=p=prime(n); p^2*(p^2+2*p-1)/2 \\ Anders Hellström, Sep 04 2015

(PARI) lista(nn) = forprime(p=2, nn, print1(p^2*(p^2+2*p-1)/2, ", ")); \\ Michel Marcus, Sep 04 2015

CROSSREFS

Cf. A229739, A255499.

Sequence in context: A255499 A229739 A221909 * A239856 A214483 A275179

Adjacent sequences:  A229735 A229736 A229737 * A229739 A229740 A229741

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Oct 05 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)