%I
%S 0,0,0,0,2,0,0,36,36,0,0,360,888,360,0,0,2688,10896,10896,2688,0,0,
%T 17280,108000,186576,108000,17280,0,0,101376,959040,2700432,2700432,
%U 959040,101376,0,0,559104,7952256,35485776,58038768,35485776,7952256,559104,0,0
%N T(n,k)=Number of defective 3colorings of an nXk 0..2 array connected diagonally and antidiagonally with exactly two mistakes, and colors introduced in rowmajor 0..2 order
%C Table starts
%C .0......0........0..........0............0..............0................0
%C .0......2.......36........360.........2688..........17280...........101376
%C .0.....36......888......10896.......108000.........959040..........7952256
%C .0....360....10896.....186576......2700432.......35485776........437924880
%C .0...2688...108000....2700432.....58038768.....1138164048......21063718224
%C .0..17280...959040...35485776...1138164048....33555543408.....937213830720
%C .0.101376..7952256..437924880..21063718224...937213830720...39647663129952
%C .0.559104.62892288.5169543120.373936700880.25175909234736.1617006498774912
%H R. H. Hardin, <a href="/A229685/b229685.txt">Table of n, a(n) for n = 1..220</a>
%F Empirical for column k:
%F k=1: a(n) = a(n1)
%F k=2: a(n) = 12*a(n1) 48*a(n2) +64*a(n3) for n>5
%F k=3: a(n) = 18*a(n1) 108*a(n2) +216*a(n3) for n>4
%F k=4: a(n) = 27*a(n1) 243*a(n2) +729*a(n3) for n>6
%F k=5: [order 12] for n>13
%F k=6: [order 18] for n>20
%F k=7: [order 46] for n>47
%e Some solutions for n=3 k=4
%e ..0..1..2..2....0..1..2..0....0..1..1..1....0..1..1..0....0..1..1..0
%e ..2..1..1..0....1..1..2..2....2..2..2..1....2..2..2..1....0..2..0..2
%e ..0..0..1..0....2..0..0..0....1..1..1..0....0..0..0..2....2..1..0..1
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_ Sep 27 2013
