This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229654 Quadrisection a(4n+k) gives k-th differences of a for k=0..3 with a(n)=0 for n<3 and a(3)=1. 8
 0, 0, 0, 1, 0, 0, 1, -3, 0, 1, -2, 3, 1, -1, 1, 0, 0, 0, 1, -6, 0, 1, -5, 12, 1, -4, 7, -9, -3, 3, -2, -2, 0, 1, -4, 12, 1, -3, 8, -15, -2, 5, -7, 7, 3, -2, 0, 4, 1, -2, 4, -7, -1, 2, -3, 4, 1, -1, 1, -1, 0, 0, 0, 1, 0, 0, 1, -9, 0, 1, -8, 21, 1, -7, 13, -18 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..65536 FORMULA a(4*n)   = a(n), a(4*n+1) = a(n+1) - a(n), a(4*n+2) = a(n+2) - 2*a(n+1) + a(n), a(4*n+3) = a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n). MAPLE a:= proc(n) option remember; (m-> `if`(n<4, `if`(n=3, 1, 0), add(        a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))(irem(n, 4, 'q'))     end: seq(a(n), n=0..100); MATHEMATICA a[n_] := a[n] = Module[{ m, q}, {q, m} = QuotientRemainder[n, 4]; If[n < 4, If[n == 3, 1, 0], Sum[a[q + m - j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 09 2018, from Maple *) CROSSREFS Cf. A005590, A229653, A229655, A229656, A229657, A229658, A229659, A229660. Sequence in context: A249695 A136748 A235919 * A306288 A272188 A049765 Adjacent sequences:  A229651 A229652 A229653 * A229655 A229656 A229657 KEYWORD sign,eigen,look AUTHOR Alois P. Heinz, Sep 27 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:25 EDT 2019. Contains 328087 sequences. (Running on oeis4.)