login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Cogrowth function of the group Baumslag-Solitar(9,9).
10

%I #10 Oct 22 2015 14:48:58

%S 1,4,28,232,2092,19864,195352,1970896,20275660,211823800,2240795888,

%T 23951292204,258255572584,2805537209648,30675548482880,

%U 337307986673572,3727607821613388,41377406950962504,461130952671387592,5157535231753964268

%N Cogrowth function of the group Baumslag-Solitar(9,9).

%C a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(9,9)=<a,t | ta^9=a^9t>.

%H Murray Elder, <a href="/A229651/b229651.txt">Table of n, a(n) for n = 0..49</a>

%H M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, T. Wong, <a href="http://arxiv.org/abs/1309.4184">The cogrowth series for BS(N,N) is D-finite</a>

%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>

%e For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.

%Y The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

%K nonn,walk

%O 0,2

%A _Murray Elder_, Sep 28 2013