login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229616 Expansion of (phi(-q)^3 / phi(-q^3))^2 in powers of q where phi() is a Ramanujan theta function. 5
1, -12, 60, -156, 204, -72, -84, -96, 492, -588, 360, -144, 60, -168, 480, -936, 1068, -216, -516, -240, 1224, -1248, 720, -288, 348, -372, 840, -1884, 1632, -360, -504, -384, 2220, -1872, 1080, -576, -372, -456, 1200, -2184, 2952, -504, -672, -528, 2448 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2500

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Simon Plouffe, Conjectures of the OEIS, as of June 20, 2018.

FORMULA

Expansion of (2*a(q^2) - a(q))^2 = b(q)^4 / b(q^2)^2 in powers of q where a(), b() are cubic AGM theta functions.

Expansion of (eta(q)^6 * eta(q^6) / (eta(q^2)^3 * eta(q^3)^2))^2 in powers of q.

Euler transform of period 6 sequence [-12, -6, -8, -6, -12, -4, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 432 (t / i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A229615.

G.f.: ( Product_{k>0} (1 + x^(3*k)) * (1 - x^k)^3 / ((1 + x^k)^3 * (1 - x^(3*k))))^2.

Convolution square of A122859.

Conjecture: -3 A122858(n) - A229616(n) + 4 A282031(n) = 0 for all n. - Thomas Baruchel, Jun 23 2018

EXAMPLE

G.f. = 1 - 12*q + 60*q^2 - 156*q^3 + 204*q^4 - 72*q^5 - 84*q^6 - 96*q^7 + ...

MATHEMATICA

a[ n_] := If[n < 1, Boole[ n == 0], -12 Sum[ {1, -7, 10, -7, 1, 2}[[ Mod[d, 6, 1]]] n/d, {d, Divisors[n]}]];

a[ n_] := If[n < 1, Boole[ n == 0], -12 Sum[ {1, -3, 4, -3, 1, 0}[[ Mod[d, 6, 1]]] d, {d, Divisors[n]}]];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^6 / EllipticTheta[ 4, 0, q^3]^2, {q, 0, n}];

PROG

(PARI) {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, n/d * [2, 1, -7, 10, -7, 1][d%6 + 1]))};

(PARI) {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, d * [0, 1, -3, 4, -3, 1][d%6 + 1]))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^6 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)^2))^2, n))};

(Sage) A = ModularForms( Gamma0(6), 2, prec=50).basis(); A[0] - 12*A[1] + 60*A[2];

(MAGMA) A := Basis( ModularForms( Gamma0(6), 2), 50); A[1] - 12*A[2] + 60*A[3];

CROSSREFS

Cf. A122859, A229615.

Sequence in context: A099830 A158443 A153792 * A321465 A000141 A328094

Adjacent sequences:  A229613 A229614 A229615 * A229617 A229618 A229619

KEYWORD

sign

AUTHOR

Michael Somos, Sep 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 20:28 EDT 2019. Contains 328197 sequences. (Running on oeis4.)