OFFSET
0,2
COMMENTS
This sequence was chosen to illustrate a method of matching generating functions and closed-form solutions: The general term associated with the generating function 1/((1-s*x)^3*(1-r*x)) with r>s>=1 is a(n) = [r^(n+3) - s^(n+1)*(s^2 + (r-s)*s*binomial(n+3,1) +(r-s)^2*binomial(n+3,2))] / (r-s)^3 .
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (14,-36,34,-11).
FORMULA
a(n) = (11^(n+3) - (1 + 10*C(n+3,1) + 100*C(n+3,2)))/1000 = (11^(n+3) - (50*n^2 + 260*n + 331))/1000.
a(n) = 14*a(n-1) -36*a(n-2) +34*a(n-3) -11*a(n-4). - Vincenzo Librandi, Sep 27 2013
EXAMPLE
a(3) = (11^6 - (50*3^2+260*3 + 331))/1000 = 1770 .
MATHEMATICA
CoefficientList[Series[1/((1 - x)^3 (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Sep 27 2013 *)
LinearRecurrence[{14, -36, 34, -11}, {1, 14, 160, 1770}, 30] (* Harvey P. Dale, Apr 09 2016 *)
PROG
(Magma) [(11^(n+3) - (50*n^2 + 260*n + 331))/1000: n in [0..25]]; // Vincenzo Librandi, Sep 27 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Yahia Kahloune, Sep 26 2013
STATUS
approved