This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229597 Decimal expansion of L(e), the limit of iterations of continued fraction transforms of e. 4
 2, 3, 4, 8, 4, 0, 7, 4, 7, 0, 2, 7, 9, 2, 3, 0, 1, 7, 7, 5, 3, 9, 4, 2, 1, 0, 6, 1, 9, 7, 5, 6, 8, 4, 4, 6, 5, 9, 9, 4, 5, 9, 1, 3, 4, 1, 9, 4, 4, 3, 6, 3, 7, 9, 2, 4, 0, 6, 8, 6, 0, 9, 3, 9, 3, 3, 8, 1, 8, 6, 8, 6, 5, 2, 7, 8, 2, 1, 1, 7, 2, 8, 8, 8, 2, 2, 5, 8, 7, 0, 0, 9, 6, 9, 0, 7, 5, 5, 1, 7, 1, 4, 2, 0, 3, 9, 6, 1, 2, 2, 5, 9, 5, 9, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The function f defined at A229350 is here called the continued fraction transform; specifically, to define f(x), start with x > 0:  let p(i)/q(i), for i >=0, be the convergents to x; then f(x) is the number [p(0)/q(0), p(1)/q(1), p(2)/q(2), ... ]. Thus, f(e) = 2.9991459...,   f(f(e)) = 2.3690966..., f(f(f(e))) = 2.3483570....  Let L(x) = lim(f(n,x)), where f(0,x) = x, f(1,x) = f(x), and f(n,x) = f(f(n-1,x)).  Then L(e) = 2.34840747..., . Conjecture: if x is an irrational number between 2 and 3, then L(x) = L(e). LINKS EXAMPLE L(e) = 2.348407470279230177539421061975684465994591341944... MATHEMATICA \$MaxExtraPrecision = Infinity; z = 600; x[0] = E; c[0] = Convergents[x[0], z]; x[n_] := N[FromContinuedFraction[c[n - 1]], 80]; c[n_] := Convergents[x[n]]; Table[x[n], {n, 1, 20}] (* f(e), f(f(e)), ... *) RealDigits[x[1]]  (* f(e), A229594 *) Numerator[c[1]]   (* A229595 *) Denominator[c[1]] (* A229596 *) CROSSREFS Cf. A229594, A229595, A229596. Sequence in context: A109617 A181881 A071373 * A175060 A138773 A132989 Adjacent sequences:  A229594 A229595 A229596 * A229598 A229599 A229600 KEYWORD nonn,cons AUTHOR Clark Kimberling, Sep 26 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 19:49 EDT 2019. Contains 322446 sequences. (Running on oeis4.)