login
T(n,k) = number of arrays of length n that are sums of k consecutive elements of length n+k-1 permutations of 0..n+k-2.
10

%I #9 Apr 27 2021 21:09:36

%S 1,1,2,1,6,6,1,12,16,24,1,20,96,120,120,1,30,264,304,648,720,1,42,524,

%T 2904,4416,5040,5040,1,56,920,9120,9968,38520,38592,40320,1,72,1484,

%U 20272,133616,257136,302400,362880,362880,1,90,2216,38176,431328,465984

%N T(n,k) = number of arrays of length n that are sums of k consecutive elements of length n+k-1 permutations of 0..n+k-2.

%C Table starts

%C ......1.......1........1........1........1.......1......1.......1......1....1

%C ......2.......6.......12.......20.......30......42.....56......72.....90..110

%C ......6......16.......96......264......524.....920...1484....2216...3148.4304

%C .....24.....120......304.....2904.....9120...20272..38176...64920.102848

%C ....120.....648.....4416.....9968...133616..431328.992032.1932256

%C ....720....5040....38520...257136...465984.7867328

%C ...5040...38592...302400..3160800.20661216

%C ..40320..362880..3540672.37000368

%C .362880.3600000.39595392

%H R. H. Hardin, <a href="/A229565/b229565.txt">Table of n, a(n) for n = 1..71</a>

%e Some solutions for n=3, k=4:

%e 7 9 13 10 11 6 9 7 8 8 11 8 7 13 12 12

%e 9 11 14 13 14 10 6 9 6 13 14 10 11 8 7 10

%e 10 10 11 11 11 13 11 14 9 12 10 8 10 9 9 11

%Y Column 1 is A000142.

%Y Row 2 is A002378.

%K nonn,tabl

%O 1,3

%A _R. H. Hardin_, Sep 26 2013