The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229547 Numbers n such that n - product_of_digits(n) is a palindrome. 3
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 29, 34, 46, 57, 61, 78, 82, 93, 101, 129, 143, 187, 202, 218, 226, 244, 247, 252, 269, 294, 297, 303, 319, 336, 348, 357, 361, 364, 386, 404, 412, 419, 437, 453, 462, 488, 505, 514, 519, 524, 534, 539, 544, 554, 564, 574, 584, 594, 597, 606, 613, 615, 617, 619, 625, 635, 638, 645, 655, 663 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..10000 EXAMPLE 143 - (1*4*3) = 131 (a palindrome). So, 143 is a member of the sequence. MATHEMATICA f[n_] := Block[{d = n - Times @@ IntegerDigits@ n}, d == FromDigits@ Reverse[IntegerDigits@ d]]; Select[Range[0, 1000], f] (* Michael De Vlieger, Mar 12 2015 *) PROG (Python) def rev(n): ..r = '' ..for i in str(n): ....r = i + r ..return int(r) def DP(n): ..p = 1 ..for i in str(n): ....p *= int(i) ..return p {print(n, end=', ') for n in range(10**3) if n-DP(n)==rev(n-DP(n))} # Simplified by Derek Orr, Mar 12 2015 (PARI) for(n=0, 10^3, d=digits(n); p=prod(i=1, #d, d[i]); if(Vecrev(digits(n-p))==digits(n-p), print1(n, ", "))) \\ Derek Orr, Mar 12 2015 CROSSREFS Cf. A070565. Sequence in context: A256005 A031309 A122621 * A118767 A072941 A225655 Adjacent sequences:  A229544 A229545 A229546 * A229548 A229549 A229550 KEYWORD nonn,base,easy AUTHOR Derek Orr, Sep 26 2013 EXTENSIONS More terms from Derek Orr, Mar 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 11:25 EDT 2020. Contains 334825 sequences. (Running on oeis4.)