%I #20 Aug 20 2021 10:03:15
%S 5,167,1063,1597,2749,3373,13691,83891,131591
%N Numbers k such that (38^k + 1)/39 is prime.
%C All terms are primes. a(9) > 10^5.
%H P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>
%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
%H H. Dubner and T. Granlund, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.
%H H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>.
%t Do[ p=Prime[n]; If[ PrimeQ[ (38^p + 1)/39 ], Print[p] ], {n, 1, 9592} ]
%o (PARI) is(n)=ispseudoprime((38^n+1)/39) \\ _Charles R Greathouse IV_, Feb 17 2017
%Y Cf. A000978 = numbers n such that (2^n + 1)/3 is prime. Cf. A007658, A057171, A057172, A057173, A057175, A001562, A057177, A057178, A057179, A057180, A057181, A057182, A057183, A057184, A057185, A057186, A057187, A057188, A057189, A057190, A057191, A071380, A071381, A071382, A084741, A084742, A065507, A126659, A126856, A185240, A229145.
%K hard,more,nonn
%O 1,1
%A _Robert Price_, Sep 25 2013
%E a(9)=131591 corresponds to a probable prime discovered by _Paul Bourdelais_, Jul 03 2018