login
A229508
Number of defective 3-colorings of an n X 6 0..2 array connected diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.
1
0, 7680, 228096, 6298560, 162171072, 4032737280, 97662620160, 2320483572864, 54321921368064, 1256772873968640, 28798595015489856, 654681579415674048, 14783463288895694400, 331920615489235774848, 7415532825963054368832
OFFSET
1,2
COMMENTS
Column 6 of A229510.
LINKS
FORMULA
Empirical: a(n) = 50*a(n-1) -715*a(n-2) +324*a(n-3) +50175*a(n-4) -180630*a(n-5) -940491*a(n-6) +4556250*a(n-7) +2329155*a(n-8) -27398736*a(n-9) +13286025*a(n-10) +47829690*a(n-11) -43046721*a(n-12) for n>13.
Empirical g.f.: 192*x^2*(40 - 812*x + 2005*x^2 + 40851*x^3 - 164547*x^4 - 625725*x^5 + 3177063*x^6 + 1119015*x^7 - 16522785*x^8 + 8109396*x^9 + 26926344*x^10 - 23914845*x^11) / ((1 - 25*x + 90*x^2 - 81*x^3)^2*(1 - 45*x^2 - 81*x^3)^2). - Colin Barker, Jun 16 2017
EXAMPLE
Some solutions for n=3
..0..1..2..0..2..0....0..1..2..0..2..0....0..1..2..2..1..2....0..1..2..1..2..1
..0..1..2..0..2..0....2..1..2..0..2..1....2..0..0..0..0..0....2..1..2..0..0..1
..0..0..2..0..1..1....0..0..2..0..0..0....2..1..2..2..2..1....0..1..1..1..2..1
CROSSREFS
Sequence in context: A145307 A232254 A008774 * A249204 A249326 A249219
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 25 2013
STATUS
approved