login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229464 Binomial transform of (2*n + 1)!. 2
1, 7, 133, 5419, 383785, 41782831, 6472067437, 1352114646163, 366325440650449, 124893891684358615, 52323557348796456661, 26420766706149889279867, 15824833185409769038803193, 11092546337733020334329204479, 8995627147680234199615065312445 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Companion sequence to A064570.

LINKS

Table of n, a(n) for n=0..14.

FORMULA

a(n) = Sum_{k = 0..n} binomial(n,k)*(2*k + 1)!.

Clearly a(n) is always odd; indeed, for n >= 1, a(n) = 1 + 6*n*b(n-1), where b(n) = [1, 11, 301, 15991, 1392761, ...] is the binomial transform of A051618.

a(n) = Integral_{x >= 0} x*(1 + x^2)^n*exp(-x) dx.

a(n) = (2*n + 1)*A064570(n) - 2*n*A064570(n-1).

Recurrence equation: a(n) = 1 + 2*n*(2*n + 1)*a(n-1) - 2*n*(2*n - 2)*a(n-2) with a(0) = 1 and a(1) = 7.

O.g.f.: Sum_{k >= 0} (2*k + 1)!*x^k/(1 - x)^(k + 1) = 1 + 7*x + 133*x^2 + 5419*x^3 + ....

a(n) ~ sqrt(Pi) * 2^(2*n + 2) * n^(2*n + 3/2) / exp(2*n). - Vaclav Kotesovec, Oct 30 2017

From Peter Bala, Nov 26 2017: (Start)

E.g.f.: exp(x)*Sum_{n >= 0} A000407(n)*x^n.

a(k) = a(0) (mod k) for all k (by the inhomogeneous recurrence equation).

More generally a(n+k) = a(n) (mod k) for all n and k (by an induction argument on n).

It follows that for each positive integer k, the sequence a(n) (mod k) is periodic, with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 7, 3, 9, 5, 1, 7, 3, 9, 5, ... with exact period 5. (End)

EXAMPLE

a(3) = 1*1! + 3*3! + 3*5! + 1*7! = 5419.

MATHEMATICA

Table[Sum[Binomial[n, k] * (2*k+1)!, {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Oct 30 2017 *)

CROSSREFS

Cf. A000522, A051618, A064570, A294352, A000407.

Sequence in context: A274258 A251577 A082164 * A317216 A119670 A003374

Adjacent sequences:  A229461 A229462 A229463 * A229465 A229466 A229467

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Sep 25 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 18:15 EST 2020. Contains 338908 sequences. (Running on oeis4.)