login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229451 G.f.: exp( Sum_{n>=1} (3*n)!/n!^3 * x^n/n ). 1
1, 6, 63, 866, 13899, 246366, 4676768, 93322596, 1934035965, 41286407510, 902562584556, 20119266633060, 455832458083577, 10470568749165246, 243361203186769659, 5714294570067499930, 135377464019074334826, 3232534121305720233264, 77726654423445817800164 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..18.

FORMULA

a(n) ~ c * 3^(3*n)/n^2, where c = 0.406436... - Vaclav Kotesovec, Dec 25 2013

EXAMPLE

G.f.: A(x) = 1 + 6*x + 63*x^2 + 866*x^3 + 13899*x^4 + 246366*x^5 +...

where

log(A(x)) = 6*x + 90*x^2/2 + 1680*x^3/3 + 34650*x^4/4 + 756756*x^5/5 +...+ A006480(n)*x^n/n +...

MATHEMATICA

CoefficientList[Series[Exp[6*x*HypergeometricPFQ[{1, 1, 4/3, 5/3}, {2, 2, 2}, 27*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 25 2013 *)

PROG

(PARI) {a(n)=polcoeff(exp(sum(k=1, n, (3*k)!/k!^3*x^k/k) +x*O(x^n)), n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A229452, A006480 (De Bruijn's S(3,n)).

Sequence in context: A234465 A231552 A302103 * A132078 A113669 A121415

Adjacent sequences:  A229448 A229449 A229450 * A229452 A229453 A229454

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:00 EST 2019. Contains 329836 sequences. (Running on oeis4.)