login
A229450
Number of 7 X n 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, and rows and columns lexicographically nondecreasing.
1
30, 142, 625, 2402, 8024, 23610, 62205, 149031, 329106, 677706, 1314145, 2419348, 4257692, 7203590, 11773293, 18662385, 28789446, 43346358, 63855729, 92235910, 130874080, 182707874, 251316029, 341018523, 456986682, 605363730, 793396257
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (95/1008)*n^7 - (241/360)*n^6 + (232/45)*n^5 - (1061/72)*n^4 + (5771/144)*n^3 - (7217/180)*n^2 + (18133/420)*n - 3.
Conjectures from Colin Barker, Sep 17 2018: (Start)
G.f.: x*(30 - 98*x + 329*x^2 - 302*x^3 + 456*x^4 - 66*x^5 + 123*x^6 + 3*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..0..2..2..2....0..2..2..2....0..2..2..2....0..2..2..2....0..0..2..2
..1..0..2..2....1..0..0..2....1..0..0..2....0..2..2..2....0..0..2..2
..1..0..2..2....1..1..1..0....1..0..0..2....0..2..2..2....1..1..0..0
..1..1..0..0....2..2..2..1....2..1..1..0....0..2..2..2....1..1..1..1
..1..1..1..1....2..2..2..2....2..2..2..1....1..0..0..2....1..1..1..1
..1..1..1..1....2..2..2..2....2..2..2..1....1..1..1..0....1..1..1..1
..2..2..2..2....2..2..2..2....2..2..2..2....1..1..1..1....1..1..1..1
CROSSREFS
Row 7 of A229445.
Sequence in context: A267904 A218407 A347222 * A124958 A126417 A135175
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 23 2013
STATUS
approved