OFFSET
1,1
COMMENTS
Table starts
..3...4....5....6.....7.....8......9.....10......11......12......13.......14
..5...7...10...14....19....25.....32.....40......49......59......70.......82
..8..13...22...37....60....93....138....197.....272.....365.....478......613
.12..25...53..109...212...387....665...1083....1684....2517....3637.....5105
.17..47..128..324...753..1609...3184...5890...10281...17075...27176....41696
.23..84..293..915..2546..6374..14536..30571...59969..110816..194535...326723
.30.142..625.2402..8024.23610..62205.149031..329106..677706.1314145..2419348
.38.228.1244.5843.23428.81177.247607.676983.1685570.3873314.8307126.16784531
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..480
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 2
k=2: a(n) = (1/24)*n^4 + (1/12)*n^3 - (1/24)*n^2 + (23/12)*n + 2
k=3: [polynomial of degree 6]
k=4: [polynomial of degree 8]
k=5: [polynomial of degree 10]
k=6: [polynomial of degree 12]
k=7: [polynomial of degree 14]
Empirical for row n:
n=1: a(n) = n + 2
n=2: a(n) = (1/2)*n^2 + (1/2)*n + 4
n=3: a(n) = (1/3)*n^3 + (8/3)*n + 5
n=4: a(n) = (1/4)*n^4 - (1/3)*n^3 + (13/4)*n^2 + (11/6)*n + 7
n=5: a(n) = (11/60)*n^5 - (1/2)*n^4 + (15/4)*n^3 - n^2 + (257/30)*n + 6
n=6: [polynomial of degree 6]
n=7: [polynomial of degree 7]
EXAMPLE
Some solutions for n=4 k=4
..0..2..2..2....0..2..2..2....0..0..2..2....0..0..2..2....0..2..2..2
..1..0..0..2....1..0..0..0....0..0..2..2....1..1..0..0....0..2..2..2
..2..1..1..0....2..1..1..1....1..1..0..0....1..1..1..1....0..2..2..2
..2..1..1..1....2..2..2..2....1..1..1..1....2..2..1..1....1..0..0..2
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Sep 23 2013
STATUS
approved