login
Number of set partitions of {1,...,3n} into sets of size at most 3.
2

%I #12 Dec 10 2020 17:38:04

%S 1,5,166,12644,1680592,341185496,97620050080,37286121988256,

%T 18280749571449664,11168256342434121152,8306264068494786829696,

%U 7380771881944947770497280,7715405978050522488223499776,9365880670184268387214967727104,13058232187415887547449498864463872

%N Number of set partitions of {1,...,3n} into sets of size at most 3.

%H Alois P. Heinz, <a href="/A229414/b229414.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = (3n)! * [x^(3n)] exp(x + x^2/2 + x^3/6).

%F a(n) = A001680(3n) = A229223(3n,3).

%p a:= proc(n) option remember; `if`(n<3, [1, 5, 166][n+1],

%p ((108*n^2-72*n+4)*a(n-1)-6*(n-1)*(3*n-5)*(27*n^2-48*n+10)*a(n-2)

%p +9*(n-1)*(n-2)*(3*n-1)*(3*n-7)*(3*n-5)*(3*n-8)*a(n-3))/8)

%p end:

%p seq(a(n), n=0..20);

%t G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n - k, k]; For[j = k - 1, j >= 1, j--, g = g(n-j)/j + G[n - j, k]]; g]];

%t a[n_] := G[3n, 3];

%t a /@ Range[0, 20] (* _Jean-François Alcover_, Dec 10 2020, after _Alois P. Heinz_ in A229243 *)

%Y Row n=3 of A229243.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Sep 22 2013