This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229303 Numbers n such that A031971(2*n) == n (mod 2*n). 19
 1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Complement of A229307. The asymptotic density is in [0.583154, 0.58455]. The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013] Up to (but excluding) the term 68 the exponents of even prime powers with squarefree neighbors. - Juri-Stepan Gerasimov, Apr 30 2016. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 Jose María Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n MAPLE a:= proc(n) option remember; local m;       for m from 1+`if`(n=1, 0, a(n-1)) do         if (t-> m=(add(k&^t mod t, k=1..t) mod t))(2*m)            then return m fi       od     end: seq(a(n), n=1..200);  # Alois P. Heinz, May 01 2016 MATHEMATICA g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range, g[2*#] == # &] PROG (PARI) b(n)=sum(k=1, n, Mod(k, n)^n); for(n=1, 200, if(b(2*n)==n, print1(n, ", "))); \\ Joerg Arndt, May 01 2016 CROSSREFS Cf. A014117 (numbers n such that A031971(n)==1 (mod n)). Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)). Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)). Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)). Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)). Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)). Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)). Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)). Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)). Cf. A229308 (primitive numbers in A229304). Cf. A229309 (primitive numbers in A229305). Cf. A229310 (primitive numbers in A229306). Cf. A229311 (primitive numbers in A229307). Sequence in context: A289129 A290334 A206285 * A262978 A112886 A282429 Adjacent sequences:  A229300 A229301 A229302 * A229304 A229305 A229306 KEYWORD nonn AUTHOR José María Grau Ribas, Sep 21 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 20:18 EDT 2019. Contains 327181 sequences. (Running on oeis4.)