login
Numbers n for which n' + n and n' - n are both prime, n' being the arithmetic derivative of n.
4

%I #18 Oct 16 2024 14:52:36

%S 210,330,390,690,798,966,1110,1230,2190,2310,2730,3270,4110,4530,4890,

%T 5430,6090,6270,6810,6990,7230,7890,8310,8490,9030,9210,9282,10470,

%U 10590,10770,12090,12210,12270,12570,12810,12930,13110,13830,14070,17070,17094,17310

%N Numbers n for which n' + n and n' - n are both prime, n' being the arithmetic derivative of n.

%C Intersection of A165561 and A229270.

%H Paolo P. Lava, <a href="/A229272/b229272.txt">Table of n, a(n) for n = 1..300</a>

%p with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do

%p a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);

%p if isprime(a+n) and isprime(a-n) then print(n); fi;

%p od; end: P(10^5);

%o (Python)

%o from sympy import isprime, factorint

%o A229272 = []

%o for n in range(1, 10**5):

%o np = sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0

%o if isprime(np+n) and isprime(np-n):

%o A229272.append(n)

%o # _Chai Wah Wu_, Aug 21 2014

%Y Cf. A003415, A165561, A165562, A229269-A229271.

%K nonn

%O 1,1

%A _Paolo P. Lava_, Sep 18 2013